九色视频

Object moved to .

A reactive oxygen and nitrogen species monitoring system to study their role in cancer

九色视频

  • Skip to content
  • Skip to footer
  • Accessibility options
九色视频
  • About us
  • Business and
    employers
  • Alumni and
    supporters
  • For
    students
  • Accessibility
    options
Open menu
Home
Home
  • Close
  • Study here
    • Get to know us
    • Why choose Brighton?
    • Explore our prospectus
    • Chat to our students
    • Ask us a question
    • Meet us
    • Open days and visits
    • Virtual tours
    • Applicant days
    • Meet us in your country
    • Campuses
    • Our campuses
    • Our city
    • Accommodation options
    • Our halls
    • Helping you find a home
    • What you can study
    • Find a course
    • Full A-Z course list
    • Explore our subjects
    • Our academic departments
    • How to apply
    • Undergraduate application process
    • Postgraduate application process
    • International student application process
    • Apprenticeships
    • Transfer from another university
    • International students
    • Clearing
    • Funding your time at uni
    • Fees and financial support
    • What's included in your fees
    • Brighton Boost – extra financial help
    • Advice and guidance
    • Advice for students
    • Guide for offer holders
    • Advice for parents and carers
    • Advice for schools and colleges
    • Supporting you
    • Your academic experience
    • Your wellbeing
    • Your career and employability
  • Research
    • Research and knowledge exchange
    • Research and knowledge exchange organisation
    • The Global Challenges
    • Centres of Research Excellence (COREs)
    • Research Excellence Groups (REGs)
    • Information for business
    • Community University Partnership Programme (CUPP)
    • Postgraduate research degrees
    • PhD research disciplines and programmes
    • PhD funding opportunities and studentships
    • How to apply for your PhD
    • Research environment
    • Investing in research careers
    • Strategic plan
    • Research concordat
    • News, events, publications and films
    • Featured research and knowledge exchange projects
    • Research and knowledge exchange news
    • Inaugural lectures
    • Research and knowledge exchange publications and films
    • Academic staff search
  • About us
  • Business and employers
  • Alumni, supporters and giving
  • Current students
  • Accessibility
Search our site
A selection of atoms connected together
Centre for Lifelong Health
  • Centre for Lifelong Health
  • What we do
  • Join us for study, work or visit
  • Who we are
  • What we do
  • Our research and enterprise projects
  • A reactive oxygen and nitrogen species monitoring system to study their role in cancer

A reactive oxygen and nitrogen species monitoring system to study their role in cancer

This page now redirects to Pure

https://research.brighton.ac.uk/en/projects/a-reactive-oxygen-and-nitrogen-species-rosrns-monitoring-system-t

established December 2023

 

This project will focus on developing a novel electrochemical tumour culture system to monitor reactive oxygen and nitrogen species (ROS/RNS) in primary and metastatic tumours in order to optimise new and existing cancer treatments for patients.

ROS/RNS are increased in cancer cells compared to normal cells and can promote proliferation and genomic changes to maintain an oncogenic phenotype. Cancers with a propensity to become metastatic have a progressive increase in ROS, contributing to tumour angiogenesis and metastasis. However, ROS/RNS can also induce cellular senescence, apoptosis and, in this capacity, are anti-tumourigenic. Furthermore, studies have shown that specific ROS/RNS can sensitise cancer cells to ROS-inducing chemotherapy agents. There are different types of ROS/RNS, which have variable in vivo half-lives and reactivity.

Due to the paradoxical role of ROS/RNS and limitations in current analytical techniques used to measure these species – for instance, approaches typically can only monitor one type of ROS/RNS, and are restricted to measurements over short timescales – little is known about how different amounts and types of ROS/RNS influence the state of the tumour and response to chemotherapy. Electroanalytical sensors are an attractive method to simultaneously monitor the production of a range of ROS/RNS over long timeframes from isolated tissues. Understanding how current cancer therapies alter ROS/RNS levels from ex vivo tumours, and how this affects the efficacy of treatment, will provide key insight into directing specific treatments for particular cancers.

Cancer Research UK and the Engineering and Physical Sciences Research Council (EPSRC) provided £221,728 in funding for this research project.

Project timeframe

This project commenced in July 2017 and will continue until June 2019.

Project aims

The aims of this project are to formulate relationships between physical chemists/engineers with cancer researchers to take a new approach studying cancer.

Project findings and impact

This project is ongoing; output, findings and impact will be updated in due course.

Research team

Dr Melanie Flint

Dr Bhavik Patel

Output

Output will be updated in due course.

 

Partners

National University of Singapore

University of Pittsburgh

Back to top

Contact us

九色视频
Mithras House
Lewes Road
Brighton
BN2 4AT

Main switchboard 01273 600900

Course enquiries

Sign up for updates

University contacts

Report a problem with this page

Quick links Quick links

  • Courses
  • Open days
  • Explore our prospectus
  • Academic departments
  • Academic staff
  • Professional services departments
  • Jobs
  • Privacy and cookie policy
  • Accessibility statement
  • Libraries
  • Term dates
  • Maps
  • Graduation
  • Site information
  • The Student Contract

Information for Information for

  • Current students
  • International students
  • Media/press
  • Careers advisers/teachers
  • Parents/carers
  • Business/employers
  • Alumni/supporters
  • Suppliers
  • Local residents